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Constacyclic codes over finite local Frobenius
non-chain rings of length 5 and nilpotency

index 4

C. A. Castillo-Guillén and C. Renteŕıa-Márquez

Abstract

The family of finite local Frobenius non-chain rings of length 5 and
nilpotency index 4 is determined, as a by-product all finite local Frobe-
nius non-chain rings with p5 elements (p a prime) and nilpotency index
4 are given. And the number and structure of γ-constacyclic codes over
those rings, of length relatively prime to the characteristic of the residue
field of the ring, are determined.

1 Introduction

After the work of R. Hammons et al. (see [7]) the study of linear codes over
finite rings has been a research topic of considerable interest. Some results
on the description of structural properties of linear codes, particularly cyclic
codes, over finite fields, finite chain rings and some finite local Frobenius non-
chain rings, are available in the literature ( [1], [2], [4], [5], [6], [8] ). The γ-
constacyclic codes over the finite ring A are codes invariant under the mapping
σγ : An −→ An given by σγ(a0, a1, . . . , an−1) = (γan−1, a0, . . . , an−2), where
γ is a unit of A, and are a generalization of cyclic codes. Finite Frobenius
rings represent an interesting family of rings in Coding theory due to the fact
that MacWilliams identities on the weight enumerator polynomial of a linear
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code and the relations (C⊥)⊥ = C and |C||C⊥| = |A|n are satisfied (see [11]),
where C is a linear code of length n over A.

If p is a prime number, it is well-known that up to isomorphism there is only
one local commutative ring with p elements, namely the Galois field GF(p).
The local commutative rings with p2 elements are: Zp2 , GF(p)[X]/〈X2〉 and
GF(p2). If p is odd, the local commutative Frobenius rings with p3 elements
are: GF(p3), Zp3 , GF(p)[X]/〈X3〉, Zp2 [X]/〈X2 − p, pX〉, GF(p)[X,Y]/〈X,Y〉2,
Zp2 [X]/〈X2, pX〉 and Zp2 [X]/〈X2 − ζp, pX〉, where ζ̄ is a primitive element of
GF(p). If p = 2, the local commutative Frobenius rings with 23 = 8 elements
are: GF(23), Z23 , GF(2)[X]/〈X3〉, Z22 [X]/〈X2 − 2, 2X〉, GF(2)[X,Y]/〈X,Y〉2
and Z22 [X]/〈X2, 2X〉, (see [10]).
If p is odd, the local commutative Frobenius non-chain rings with p4 elements
are:
(1) Zp3 [X]/〈X2 − ζp2, pX〉, ζ is a primitive element of GF(p),
(2) Zp3 [X]/〈X2 − p2, pX〉,
(3) Zp2 [X]/〈X2〉,
(4) Zp2 [X,Y]/〈X2 −Y2,Y2 − p,XY,Y3, pX, pY〉,
(5) Zp2 [X,Y]/〈X2 − ζY2,Y2 − p,XY,Y3, pX, pY〉, ζ is a primitive element of
GF(p),
(6) GF(p)[X,Y]/〈X2 −Y2,XY,Y3〉,
(7) GF(p)[X,Y]/〈X2 − ζY2,XY,Y3〉, ζ is a primitive element of GF(p).
And the local commutative Frobenius non-chain rings with 24 elements are:
(1) Z8[X]/〈X2 − 4, 2X〉,
(2) Z4[X]/〈X2〉,
(3) Z4[X,Y]/〈X2 −Y2,Y2 − 2,XY,Y3, 2X, 2Y〉,
(4) Z4[X,Y]/〈X2,Y2,XY − 2, 2X, 2Y〉,
(5) Z4[X]/〈X2 − 2X〉,
(6) GF(2)[X,Y]/〈X2,Y2〉,
(7) GF(2)[X,Y]/〈X2 −Y2,XY,Y3〉, (see [2], [9]).
Now it would be interesting to determine the family of finite local Frobenius
non-chain rings with p5 elements. A local Frobenius non-chain rings with
p5 elements has length 5 and the maximal ideal of a finite local Frobenius
non-chain ring of length 5 has nilpotency index 3 or 4, (see Section 4).

The purpose of this paper is twofold. First, to determine the family of
finite local Frobenius non-chain rings of length 5 and nilpotency index 4, as a
by-product all local Frobenius non-chain rings with p5 elements and nilpotency
index 4, p a prime, are given. Second, determine the number and structure of
γ-constacyclic codes whose alphabets are finite local Frobenius non-chain rings
of length 5 and nilpotency index 4, when the length of the code is relatively
prime to the characteristic of the residue field of the ring.
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The paper is organized as follows: in Section 2 basic facts on finite local
rings and modules over these rings are recalled. In Section 3 some isomor-
phisms between particular finite local rings are given. In Section 4 the family
of finite local Frobenius non-chain rings of length 5 and nilpotency index 4
is determined and the finite local Frobenius non-chain rings with p5 elements
and nilpontency index 4, p a prime, are given. In Section 5 the number and
structure of γ-constacyclic codes over finite local Frobenius non-chain rings of
length 5 and nilpotency index 4 are determined, when the length of the code
is relatively prime to the characteristic of the residue field of the ring. In the
last section some conclusions are given.

2 Preliminaries

Throughout this work all rings are assumed to be finite, commutative with
unit element and all modules are finitely generated. As usual, GF(pd) is the
Galois field with pd elements, p a prime, and GF(pd)∗ denotes the non zero
elements of GF(pd). For details about this section we refer the reader to [10].

Let A be a ring, I an ideal of A and M an A-module. Two elements a,b ∈ A
are called coprime if 〈a〉+ 〈b〉 = A. The submodule IM is called the expansion
of I to M. The annihilator ideal of M in A is defined as annA(M) := {a ∈
A : am = 0,∀ m ∈ M}. L(A) is the set of ideals of A. The length of M,
denoted by `A(M), is the length of a composition series for M. If the ring A
has the unique maximal ideal m, then it is called local, k = A/m its residue
field and it will be denoted by the triple (A,m,GF(q)). If (A,m,GF(q)) is a
finite local ring, then |M| = |GF(q)|`A(M). There is an integer t ≥ 1 such that
mt = 〈0〉 and mt−1 6= 〈0〉, called the nilpotency index of m, and t ≤ `A(A),
(see [2]). A subset G of M generates M if and only if its image Ḡ in M/mM
generates M/mM as a GF(q)-vector space. A set of generators for M obtained
from lifting a basis of the GF(q)-vector space M/mM is called a minimal A-
generating set for M and vA(M) denotes the number of elements in a minimal
A-generating set for the A-module M, (see [10], Theorem V.5). Note that
vA(M) = dimGF(q)(M/mM) = `A(M/mM).

Let (A,m,GF(q)) be a finite local ring and ¯ : A[T]→ GF(q)[T] the natu-
ral ring homomorphism that maps a 7→ a + m and the variable T to T. The
polynomial f ∈ A[T] is called basic irreducible if f̄ is irreducible in GF(q)[T].
Hensel’s Lemma (see [10], Theorem XIII.4) guarantees that factorization as a
product of pairwise coprime polynomials in GF(q)[T] lifts to such a factoriza-
tion over A. Hence if γ is a unit of A and (n, q) = 1 there exists a unique family
of monic basic irreducible pairwise coprime polynomials f1, . . . , fr ∈ A[T] such
that Tn−γ = f1 · · · fr. If g1, . . . , gk are basic irreducible polynomials such that
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Tn − γ is an associate of g1 · · · gk, then r = k and, after renumbering, fi is an
associate of gi, 1 ≤ i ≤ r. And if g1, . . . , gk ∈ A[T] are monic polynomials
such that Tn − γ = g1 · · · gk, then g1, . . . , gk are pairwise coprime, r ≥ k and
there is a partition of {1, 2, . . . , r}, U1, . . . ,Uk such that gi =

∏
u∈Ui fu, (see

[3]).

A finite ring A is called a chain ring if the lattice of its ideals is a chain
under set-theoretic inclusion. The ring A is a finite chain ring if and only
if A is local and its maximal ideal is principal if and only if A is local and
`A(A) = t, where t is the nilpotency index of the maximal ideal of A, (see [4]).
A finite local ring (A,m,GF(q)) is Frobenius if annA(m) is the unique minimal
ideal, (see [11]).

Let (A,m,GF(q)) be a finite local ring, t the nilpotency index of m, f ∈ A[T]
be a basic irreducible polynomial and s = deg(̄f). There is a monic polynomial
g in A[T] and a unit v in A[T] such that f̄ = ḡ and g = vf (see [10], Theorem
XIII.6). Let B = A[T]/〈f〉 = A[T]/〈g〉 = {a0 +a1T+ · · ·+as−1Ts−1 : ai ∈ A}.
This ring is called the separable extension of A determined by f and has
the following properties (see [2], [3] and [10]): (a) B is local with maximal
ideal mB and residue field GF(qs); (b) if T ⊂ A is a set of representatives of
GF(q) the set Ts := {a0 + a1T + · · · + as−1Ts−1 : ai ∈ T} ⊂ B is a set of
representatives of GF(qs); (c) if I is an ideal of A, then `A(I) = `B(IB); (d)
(annA(I))B = annB(IB); (e) if {α1, . . . , αl} is a minimal A-generating set for
I, then it is also a minimal B-generating set for IB and vA(I) = vB(IB); (f)
The nilpotency index of mB is t; (g) A is a chain ring if and only if B is a
chain ring; (h) A is a Frobenius ring if and only if B is a Frobenius ring, the
unique minimal ideal of B is annB(mB) = annA(m)B = mt−1B; (i) If I is an
ideal of A, then annA(annA(I)) = I and `A(annA(I)) + `A(I) = `A(A).

A (k× n) matrix over the field GF(q) is said to be in reduced row echelon
form, (rre)-form, if in each row i = 1, . . . , k, the first nonzero entry is equal
to 1, the index of the column in which the 1 occurs, called a pivotal column,
strictly increases with i, and the k pivotal columns are, in order, the columns
of the (k × k) identity matrix.

The following result describes the submodules between M and mM, where
M is a module over the local ring (A,m,GF(q)), (see [2]).

Lemma 2.1. Let (A,m,GF(q)) be a finite local ring, T ⊂ A a set of rep-
resentatives of GF(q), M an A-module and {α1, . . . , αl} be a minimal A-
generating set for M. Then the A-submodules of M between M and mM of
length k + `A(mM), where 0 < k < l = dimGF(q)(M/mM), are in one to one
correspondence with the (k× l) matrices over GF(q) in (rre)-form. The matrix
H = (āij) corresponds to the submodule 〈

∑n
i=1 a1iαi, . . . ,

∑n
i=1 akiαi〉+ mM.
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The following result is a consequence of the previous result, when vA(M) =
`A(M) − `A(mM) = 2. Recall that (0, 1) and (1, λ), where λ ∈ GF(q), are all
the 1× 2 matrices in (rre)-form over GF(q).

Corollary 2.2. Let (A,m,GF(q)) be a finite local ring, T ⊂ A a set of repre-
sentatives of GF(q), M an A-module with vA(M) = 2 and {α1, α2} a minimal
A-generating set for M. Then the A-submodules of M between M and mM of
length 1 + `A(mM) are:

〈α2〉+mM, 〈α1+λ1α2〉+mM, 〈α1+λ2α2〉+mM, . . . , 〈α1+λqα2〉+mM, λi ∈ T.

3 Some isomorphism between local rings

We present results on particular finite local rings and results on finite fields
which we will use later. Some of them may be found in the literature but we
include them all here for completeness.

The following result is a well-know fact on finite local rings, (see [10],
Theorem XVII.1).

Theorem 3.1 (Structure Theorem for Finite Local Rings). Let (A,m, k) be a
finite local ring of characteristic pk, {α1, . . . , αl} a minimal A-generating set
of m and d = [k : Fp]. Then a subring S of A exists such that

(a) S ∼= GR(pk, d), S is unique and is the largest Galois ring extension of
Zpk in A.

(b) A is a homomorphic image of S[X1, . . . ,Xl], i.e., A = S[α1, . . . , αl].

For the next result see [2].

Lemma 3.2. Let I be an ideal of the ring GR(pk, d)[X1, . . . ,Xl] such that for
all i ∈ {1, . . . , l}, Xki

i ∈ I, for some ki ∈ N. Then the ring

GR(pk, d)[X1, . . . ,Xl]/I

is local with maximal ideal 〈p,X1, . . . ,Xl〉/I and residue field GF(pd).

For the next result recall that any ideal of the ring GR(pk, d)[X1, . . . ,Xl]
is finitely generated.

Corollary 3.3. Let (A,m,GF(pd)) and (A1,m1,GF(pd11 )) be finite local rings,
char(A) = pk and vA(m) = l. By Theorem 3.1, let ψ : GR(pk, d)[X1, . . . ,Xl]→
A an epimorphism and ker(ψ) = 〈g1, . . . , gr〉. Then A ∼= A1 if and only if
|A| = |A1|, p = p1, d = d1, char(A1) = char(A), vA1

(m1) = vA(m) and a min-
imal A1-generating set for m1 exists, {α1, . . . , αl}, such that g1(α1, . . . , αl) =
. . . = gr(α1, . . . , αl) = 0 in A1.
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Proof: ⇒) We have |A| = |A1|, p = p1, d = d1, char(A1) = char(A),
vA1(m1) = vA(m) and we may assume that the Galois ring GR(pk, d) ⊂
A1. If ϕ : A → A1 is an isomorphism, then {ϕψ(X1), . . . , ϕψ(Xl)} is a
minimal A1-generating set for m1 and gi(ϕψ(X1), . . . , ϕψ(Xl)) = ϕψ(gi) =
ϕ(0) = 0, i ∈ {1, . . . , r}. Conversely: by Theorem 3.1, let the epimor-
phism ψ1 : GR(pk, d)[X1, . . . ,Xl] → A1 given by Xi 7→ αi, then ker(ψ) ⊆
ker(ψ1) and there is an epimorphism from A ∼= GR(pk, d)[X1, . . . ,Xl]/ker(ψ)
to GR(pk, d)[X1, . . . ,Xl]/ker(ψ1) ∼= A1. The assertion follows from the relation
|A| = |A1|.

Lemma 3.4. Let F = GF(pd) be a finite field.

(1) If u, v ∈ F are such that
√
u 6∈ F and

√
v 6∈ F, then

√
uv ∈ F.

(2) Let ρ, η, σ ∈ F with ρ 6= 0 and ρσ 6= η. The solutions of the system
of equations BB1 = ρB2 . . . (a),AA1 − ρA2 − σB3 = 0 . . . (b),B2

1 =
ρBB1 . . . (c),A

2
1 − ρAA1 − ηB3 = 0 . . . (d),AB1 −A1B 6= 0 . . . (e) are:

If p = 2, A = σ
√
B3√

ρσ+η
, A1 = η

√
B3

√
ρσ+η

, B1 = ρB, B ∈ F∗.
If p is odd and σ = 0, then η 6= 0, A = 0, B = η, A1 = ±η2, B1 = ρη.

If p is odd and σ 6= 0, A = ±η−ρσσ2 a3, B = η−ρσ
σ2 a2, A1 = ± (η−ρσ)η

σ3 a3,

B1 = (η−ρσ)ρ
σ2 a2, a ∈ F∗.

(3) Let u, v ∈ F with u 6= 0. Some solution of the system of equations AA1 =
vB3

1 . . . (a),BB1 = 0 . . . (b),B2 = 0 . . . (c),A2 = uB3
1 . . . (d),AB1−A1B 6=

0 . . . (e) are A = ±a
3

u , B = 0, A1 = ± va
3

u2 , B1 = a2

u , where a ∈ F∗.

Lemma 3.5. Let F = GF(pd) be the finite field u, u1, v, r, r1, s, s1 ∈ F with
uu1 6= 0, r and s not both zero and r1 and s1 not both zero. Let u1AA1 +
B1C + BC1 − vB3

1 = 0 . . . (a), u1A2 + 2BC − uB3
1 = 0 . . . (b), BB1 = 0 . . . (c),

B2 = 0 . . . (d), u1rA
2
1 + 2rB1C1 + sB3

1 = s1 . . . (e), rB
2
1 = r1 . . . (f), AB1 −

A1B 6= 0 . . . (g).
(1) If r 6= 0 (if and only if r1 6= 0) the system of equations has solution if and
only if r1

r ∈ F2 and
√

r1
r
u
u1
∈ F2,

(a) If p = 2 some solutions are A =
√

r1
r

√√
r1
r
u
u1

, B = 0, C = vr1
r +

r1
r

√
us
r +

√
s1u
r

√
r1
r , A1 =

√√
r
r1

s
ru1

r1
r +

√
s1
ru1

, B1 =
√

r1
r , C1 ∈ F.

(b) If p 6= 2 some solutions are A =
√

r1
r

√√
r1
r
u
u1

, B = 0, C ∈ F, A1 =

−
√√

r
r1
u1

u
C
u1

+

√√
r
r1
u1

u
vr1
u1r

, B1 =
√

r1
r , C1 = s1

2r

√
r
r1
− C2r

2ur1
− v2r1

2ur +

Cv
u −

sr1
2r2 .
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(2) If r = 0 (and then s 6= 0 and s1 6= 0) the system of equations has solution
if and only if s1

s ∈ F3 and s1u
su1
∈ F2.

(a) Some solutions are A =
√

s1u
su1

, B = 0, C ∈ F, A1 = − C
u1

3
√

s1
s

√
su1

s1u
+

v
u1

√
s1u1

su , B1 = 3
√

s1
s , C1 ∈ F.

Lemma 3.6. Let F = GF(pd) be the finite field, u, r, s, η, σ, ρ, f, g with uρ 6= 0,
ρσ 6= η, r and s not both zero and f and g not both zero. Let fB2

1 = r . . . (a),
fuA2

1 +2fB1C1 +gB3
1 = s . . . (b), BB1−ρB2 = 0 . . . (c), BC1 +B1C+uAA1−

uρA2−2ρBC−σB3 = 0 . . . (d), B2
1−ρBB1 = 0 . . . (e), uA2

1 + 2B1C1−ρBC1−
ρB1C− uρAA1 − ηB3 = 0 . . . (f), AB1 −A1B 6= 0 . . . (g).
(1) If r 6= 0 (if and only if f 6= 0) the system of equations has solution if and

only if r
f ∈ F2 and η−σρ

uρ

√
r
f ∈ F2.

(a) If p = 2 the solutions are:

A = 1
fρ

√
gr
u

√
r
f + 1

ρ

√
s
fu + 1

ρ2

√
r
f

√
η−σρ
uρ

√
r
f , B = 1

ρ

√
r
f , C ∈ F,

A1 = 1
f

√
gr
u

√
r
f +

√
s
fu , B1 =

√
r
f , C1 = ρC + rη

fρ3 + r
f2ρ

√
fg(η−σρ)

ρ +

1
ρ

√
s(η−σρ)
fρ

√
r
f .

(b) If p is odd, the solutions are:

A ∈ F, B = 1
ρ

√
r
f , C = −A2uρ

2

√
f
r −

r
2f2ρ4 [f(η + σρ) + gρ3] + s

2fρ

√
f
r ,

A1 = ρA ± 1
ρ

√
r
f

√
η−σρ
uρ

√
r
f , B1 =

√
r
f , C1 = −uρ

2A2

2

√
f
r −

r(η−σρ)
2fρ3 ∓

Au

√
η−σρ
uρ

√
r
f −

gr
2f2 + s

2f

√
f
r .

(2) If r = 0 (if and only if f = 0) then s 6= 0 and g 6= 0 and the system of

equations has solution if and only if s
g ∈ F3 and (η−σρ)s

ugρ ∈ F2.
The solutions are:

A ∈ F, B = 1
ρ

3

√
s
g , C ∈ F, A1 = ρA ± 1

ρ

√
(η−σρ)s
ugρ , B1 = 3

√
s
g , C1 = ρC ∓

Au 3
√

g
s

√
(η−σρ)s
ugρ + σ

ρ2
3

√
s2

g2 .

For the rest of this paper, for α in the ring GR(pk, d), the class α+ 〈p〉 is
denoted by α.
Recall the following: (1) 3 6 |pd−1 if and only if GF(pd)3 = GF(pd), (2) 3|pd−1
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if and only if GF(pd)3 ⊂ GF(pd) and in the last case the set of representa-
tives for the group GF(pd)∗/[GF(pd)∗]3 is {GF(pd)∗3, ζGF(pd)∗3, ζ2GF(pd)∗3},
where ζ is a primitive element of GF(pd).

Lemma 3.7. Let T = {0, 1, . . . , ζpd−2} be the Teichmüller set of the Galois
ring GR(p2, d), u, v, r, s, η, σ, ρ, f, g ∈ T, with uρ 6= 0, ρσ 6= η, r and s not both
zero and f and g not both zero. Let A(u,v,r,s) given by GR(p2, d)[X,Y]/〈rY2 +
sY3 − p,X2 − uY3,XY − vY3,X4,X3Y,X2Y2,XY3,Y4〉 and B(η,σ,ρ,f,g) given
by GR(p2, d)[X,Y]/〈fY2+gY3−p,XY−ρX2−σX3,Y2−ρXY−ηX3,X4,X3Y,
X2Y2,XY3,Y4〉. Then the rings A(u,v,r,s) and B(η,σ,ρ,f,g) are isomorphic to
one of the following rings:

(a) If r 6= 0 and p = 2.
(1) A(1,0,1,0) = GR(22, d)[X,Y]/〈Y2 − 2,X2 −Y3,XY〉.

(b) If r 6= 0 and p is odd.
(1) A(1,0,1,0) = GR(p2, d)[X,Y]/〈Y2 − p,X2 −Y3,XY〉;
(2) A(1,0,ζ,0) = GR(p2, d)[X,Y]/〈ζY2 − p,X2 −Y3,XY〉;
(3) A(ζ,0,1,0) = GR(p2, d)[X,Y]/〈Y2 − p,X2 − ζY3,XY〉;
(4) A(ζ,0,ζ,0) = GR(p2, d)[X,Y]/〈ζY2 − p,X2 − ζY3,XY〉.

(c) If r = 0, p = 2 and 3|2d − 1.
(1) A(1,0,0,1) = GR(22, d)[X,Y]/〈Y3 − 2,X2 −Y3,XY〉;
(2) A(1,0,0,ζ) = GR(22, d)[X,Y]/〈ζY3 − 2,X2 −Y3,XY〉;
(3) A(1,0,0,ζ2) = GR(22, d)[X,Y]/〈ζ2Y3 − 2,X2 −Y3,XY〉.

(d) If r = 0, p = 2 and 3 6 |2d − 1.
(1) A(1,0,0,1) = GR(22, d)[X,Y]/〈Y3 − 2,X2 −Y3,XY〉.

(e) If r = 0, p is odd and 3|pd − 1.
(1) A(1,0,0,1) = GR(p2, d)[X,Y]/〈Y3 − p,X2 −Y3,XY〉;
(2) A(1,0,0,ζ) = GR(p2, d)[X,Y]/〈ζY3 − p,X2 −Y3,XY〉;
(3) A(1,0,0,ζ2) = GR(p2, d)[X,Y]/〈ζ2Y3 − p,X2 −Y3,XY〉;
(4) A(ζ,0,0,1) = GR(p2, d)[X,Y]/〈Y3 − p,X2 − ζY3,XY〉;
(5) A(ζ,0,0,ζ) = GR(p2, d)[X,Y]/〈ζY3 − p,X2 − ζY3,XY〉;
(6) A(ζ,0,0,ζ2) = GR(p2, d)[X,Y]/〈ζ2Y3 − p,X2 − ζY3,XY〉.

(f) If r = 0, p is odd and 3 6 |pd − 1.
(1) A(1,0,0,1) = GR(p2, d)[X,Y]/〈Y3 − p,X2 −Y3,XY〉;
(2) A(ζ,0,0,1) = GR(p2, d)[X,Y]/〈Y3 − p,X2 − ζY3,XY〉.

Proof: We have A(u,v,r,s) = GR(p2, d)[X,Y]/〈rY2+sY3−p,X2−uY3,XY−
vY3,Y4〉, B(η,σ,ρ,f,g) = GR(p2, d)[X,Y]/〈fY2+gY3−p,XY−ρX2−σX3,Y2−
ρXY − ηX3,X4〉 and, by Lemma 3.2, the rings A(u,v,r,s) and B(η,σ,ρ,f,g) are
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local with maximal ideal 〈x, y〉 and residue field GF(pd). First we consider
the ring A(u,v,r,s). In the ring A(u,v,r,s) the relations p = ry2 + sy3, py = ry3,
px = rxy2 + sxy3 = 0 are satisfied, then every element of the ring A(u,v,r,s)

can be uniquely written as a0 + ax + by + cy2 + dy3, where a0, a, b, c, d ∈ T,
the elements of its maximal ideal are ax + by + cy2 + dy3, where a, b, c, d ∈ T.

Observe that for u, v, r, s, u1, r1, s1 ∈ T such that uu1 6= 0, r and s not both
zero and r1 and s1 not both zero, by Corollary 3.3, A(u,v,r,s)

∼= A(u1,0,r1,s1) if
and only if there exist a, a1, b, b1, c, c1 ∈ T such that {α = ax + by + cy2, β =
a1x + b1y + c1y2} is a minimal A(u1,0,r1,s1)-generating set for the maximal

ideal of A(u1,0,r1,s1), hence ab1 − a1b 6= 0, and these elements must satisfy the
relations satisfied by x and y in A(u,v,r,s), i.e., αβ − vβ3 = 0, α2 − uβ3 = 0,
rβ2 + sβ3 = p. From these relations and the expression for α and β we have:
(u1aa1 + b1c+ bc1 − vb31)y3 + bb1y2 = 0, (u1a

2 + 2bc− ub31)y3 + b2y2 = 0 and
(u1ra

2
1 + 2rb1c1 + sb31)y3 + rb21y2 = s1y3 + r1y2. These last relations hold if

and only if a, a1, b, b1, c, c1 ∈ T exist such that u1aa1 + b1c + bc1 − vb
3

1 = 0,

u1a
2 + 2bc − ub31 = 0, bb1 = 0, b

2
= 0, u1ra

2
1 + 2rb1c1 + sb

3

1 = s1, rb
2

1 = r1,
ab1 − a1b 6= 0 if and only if a, a1, b, b1, c, c1 ∈ T exist such that a, a1, b, b1, c, c1
are solutions of the system of equations of Lemma 3.5.

From the above argument it is easy to see that an isomorphism between
A(u,v,r,s) and A(u1,0,r1,s1) is given by x 7→ ax+by+cy2 and y 7→ a1x+b1y+c1y2,

where a, a1, b, b1, c, c1 ∈ T are such that a, a1, b, b1, c, c1 are solutions of the
equations of Lemma 3.5.

Now for the case B(η,σ,ρ,f,g)
∼= A(u,0,r,s), we use Lemma 3.6 and the same

arguments as above. That is, if we affirm B(η,σ,ρ,f,g)
∼= A(u,0,r,s), then there is

a minimal generating set {α = ax+by+cy2+dy3, β = a1x+b1y+c1y2+d1y3} of

the maximal ideal of A(u,0,r,s), where a, a1, b, b1, c, c1, d, d1 ∈ T satisfy fb
2

1 = r,

fua21+2fb1c1+gb
3

1 = s, bb1−ρb
2

= 0, bc1+b1c+uaa1−ρua2−2ρbc−σb3 = 0,

b
2

1 − ρbb1 = 0, ua21 + 2b1c1 − ρbc1 − ρb1c− ρuaa1 − ηb
3

= 0 and ab1 − a1b 6= 0.
And the assertion follows.

Lemma 3.8. Let u, v, η, σ, ρ ∈ GF(pd) with uρ 6= 0, ρσ 6= η. Let A(u,v) =

GF(pd)[X,Y]/〈X2 − uY3,XY − vY3,X4,X3Y,X2Y2,XY3,Y4〉 and B(η,σ,ρ) =

GF(pd)[X,Y]/〈XY − ρX2 − σX3,Y2 − ρXY − ηX3,X4,X3Y,X2Y2,XY3,Y4〉.
Then the rings A(u,v) and B(η,σ,ρ) are isomorphic to the ring:

A(1,0) = GF(pd)[X,Y]/〈X2 −Y3,XY〉.

Proof: The same arguments as in Lemma 3.7, and using (2) and (3) of
Lemma 3.4, can be followed.

Lemma 3.9. Let T = {0, 1, . . . , ζpd−2} be the Teichmüller set of the Ga-
lois ring GR(p4, d) and u, v, η, σ, ρ ∈ T with uρ 6= 0 and ρσ 6= η. Let A(u,v)
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given by GR(p4, d)[X,Y]/〈X−p,Y2−uX3,XY−vX3,X4,X3Y,X2Y2,XY3,Y4〉
and B(η,ρ,σ) given by GR(p4, d)[X,Y]/〈X − p,XY − ρX2 − σX3,Y2 − ρXY −
ηX3,X4,X3Y,X2Y2,XY3,Y4〉. Then the rings A(u,v) and B(η,ρ,σ) are isomor-
phic to one of the following rings:

(a) If p = 2
(1) A(1,0) = GR(24, d)[X]/〈X2 − 23, 2X〉.

(b) If p is odd
(1) A(1,0) = GR(p4, d)[X]/〈X2 − p3, pX〉;
(2) A(ζ,0) = GR(p4, d)[X]/〈X2 − ζp3, pX〉.

Proof: The same arguments as in Lemma 3.7 can be followed. And observe
that A(ζ,0)

∼= A(1,0) if and only if ζ ∈ GF(pd)2 if and only if p = 2.

Lemma 3.10. Let T = {0, 1, . . . , ζpd−2} be the Teichmüller set of the Galois
ring GR(p3, d), u, v ∈ T with u 6= 0 and A(u,v) = GR(p3, d)[X,Y]/〈X−p,X2−
uY3,XY− vY3,X4,X3Y,X2Y2,XY3,Y4〉. Then the ring A(u,v) is isomorphic
to one of the following rings:

(a) 3 6 |pd − 1
(1) A(1,0) = GR(p3, d)[X]/〈p2 −X3, pX〉.

(b) 3|pd − 1
(1) A(1,0) = GR(p3, d)[X]/〈p2 −X3, pX〉
(2) A(ζ,0) = GR(p3, d)[X]/〈p2 − ζX3, pX〉
(3) A(ζ2,0) = GR(p3, d)[X]/〈p2 − ζ2X3, pX〉.

Proof: The same arguments as in Lemma 3.7 can be followed. And observe
that: A(1,0)

∼= A(ζ,0) if and only if ζ ∈ GF(pd)3, A(1,0)
∼= A(ζ2,0) if and only if

ζ
2 ∈ GF(pd)3, A(ζ,0)

∼= A(ζ2,0) if and only if ζ ∈ GF(pd)3.

4 Finite local Frobenius non-chain rings of length 5 and
nilpotency index 4

In the following we focus on describing the family of finite local Frobenius
non-chain rings of length 5 and nilpotency index 4. As a corollary the finite
local Frobenius non-chain rings with 32 elements and nilpotency index 4 are
given.

Let Ft be the family of finite local Frobenius non-chain rings with nilpo-
tency index t, Ll be the family of finite local Frobenius non-chain rings of
length l and Ftl = Ft ∩ Ll. Observe the following: a) local Frobenius rings
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with nilpotency index 2 are chain rings because annA(m) = m is a simple
ideal and m is principal; (b) local rings with nilpotency index 1 are fields; (c)
L5 = F3

5 ∪ F4
5 because the previous observations and the relation t < `A(A),

where A is a local non chain ring and t is the nilpotency index of its maximal
ideal.

The following results on local Frobenius rings will be used later on. Recall
that if (A,m,GF(pd)) is a local Frobenius ring, I is an ideal of A and t is
its nilpotency index, then the relations (a) `A(A) = `A(I) + `A(ann(I)), (b)
annA(annA(I)) = I and (c) annA(m) = mt−1 are satisfied.

Lemma 4.1. Let (A,m,GF(q)) be a finite local Frobenius non-chain ring, t
the nilpontency index of m and I an ideal of A. Then

(1) `A(m2) ≤ `A(A)− 3.

(2) If `A(I) = `A(A)− 2, then m2 ⊂ I ⊂ m.

(3) If `A(I) = 2, then mt−1 ⊂ I ⊂ ann(m2).

(4) If `A(I) = `A(annA(m2)) and vA(I) = `A(I)− 1, then I = annA(m2).

(5) Let i ∈ {2, . . . , t− 1}, then mi−1annA(mi) = annA(m) = mt−1.

(6) vA(annA(m2)) = vA(m).

Proof: (1) The assertion follows from the relation:
vA(m) = `A(m/m2) = `A(m)− `A(m2) = `A(A)− 1− `A(m2) ≥ 2.
(2) By Nakayama’s Lemma I + m2 ⊂ m, then:
`A(A)− 2 = `A(I) ≤ `A(I +m2) < `A(m) = `A(A)− 1, `A(I) = `A(I +m2) and
m2 ⊂ I = I + m2.
(3) Since `A(annA(I)) = `A(A)− `A(I) = `A(A)− 2, then:
m2 ⊂ annA(I) ⊂ m, and mt−1 = annA(m) ⊂ I ⊂ annA(m2).
(4) Since vA(I) = `A(I)− 1 = `A(I)− `A(mI), then:
`A(mI) = 1, mI = mt−1, m2I = 〈0〉 and I ⊆ annA(m2).
The assertion follows from the relation `A(I) = `A(annA(m2)).
(5) The relation mi−1annA(mi) = 〈0〉 implies mi−1 ⊆ annA(annA(mi)) = mi,
which is not possible. Then mi−1annA(mi) 6= 〈0〉, m[mi−1annA(mi)] = 〈0〉,
mi−1annA(mi) ⊆ annA(m) and mi−1annA(mi) = annA(m) = mt−1.
(6) From (5), mannA(m2) = mt−1, then:
vA(annA(m2)) = `A(annA(m2)/mt−1) = `A(annA(m2))−1 = `A(A)−`A(m2)−
1 = `A(m)− `A(m2) = vA(m).

Lemma 4.2. Let (A,m,GF(q)) be a finite local Frobenius ring, t ≥ 4 the
nilpotency index of m, T ⊂ A a set of representatives of GF(q), {α1, . . . , αl}
a minimal A-generating set for m, I an ideal of A and B = A/mt−1. We have
the following:
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(1) B is a local ring

(a) The maximal ideal of B is m/mt−1,

(b) The residue field of B is isomorphic to GF(q).

(c) T1 = {β + mt−1 : β ∈ T} ⊂ B is a set of representatives for GF(q),

(d) If I 6= 0, then `B(I/mt−1) = `A(I)−1, in particular `B(B) = `A(A)−
1.

(e) {α1 + mt−1, . . . , αl + mt−1} is a B-generating set for m/mt−1.

(2) `B(annB(m/mt−1)) < `A(A)− 2.

(3) If A is not a chain ring, then B is not a Frobenius ring.

Proof: (1a) follows from the Correspondence Theorem.
(1b) follows from the relation [A/mt−1]/[m/mt−1] ∼= A/m.
(1c) and (1d) are easy.
(1e) the assertion follows from the relation

vB(m/mt−1) = `B([m/mt−1]/[m2/mt−1]) = `A(m/m2) = vA(m).

(2) We have annB(m/mt−1) = (mt−1 : m)/mt−1, where (mt−1 : m) = {α ∈ A :
αm ⊆ mt−1}. The relation (mt−1 : m) = m implies m2 ⊆ mt−1, which is not
possible, by Nakayama’s Lemma, then (mt−1 : m) ⊂ m and

`B(annB(m/mt−1)) < `A(m)− 1 = `A(A)− 2.

(3) By (5) and (6) of Lemma 4.1, mannA(m2) = mt−1 and l = vA(annA(m2)) =
vA(m) ≥ 2. By Lemma 2.1, the ideals between annA(m2) and mannA(m2) =
mt−1 of length 1 + `A(mt−1) = 2 are in one to one correspondence with the,
ql−1
q−1 , (1 × l) matrices over GF(q) in (rre)-form. Since ideals of A of length 2

are in one to one correspondence with minimal ideals of B, then B has ql−1
q−1

minimal ideals and is not a Frobenius ring.

Lemma 4.3. Let (A,m,GF(q)) ∈ F4
5. Then:

(1) vA(annA(m2)) = vA(m) = 2,

(2) vA(m2) = 1,

(3) `A(m2) = 2,

(4) `A(annA(m2)) = 3,
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Proof: The first equality in (1) follows from Lemma 4.1(6) . (4) follows from
(3) and the relation `A(I)+`A(ann(I)) = `A(A). Since 5 = `A(A) = `A(A/m)+
`A(m/m2) + `A(m2/m3) + `A(m3) = 2 + vA(m) + vA(m2) and vA(m) ≥ 2, then
vA(m) = 2, vA(m2) = 1 and `A(m2) = 2.

The following result is central in proving the main result of this section.
Observe that if (A,m,GF(q)) is a finite local ring, T ⊂ A a set of repre-
sentatives of GF(q) and x, y ∈ m with annB(x) = annB(y). Then x2 = 0
if and only if x ∈ annB(x) = annB(y) if and only if xy = 0 if and only if
y ∈ annB(x) = annB(y) if and only if y2 = 0. And if 〈x〉 = 〈y〉 is a minimal
ideal of A. By Nakayama’s Lemma my = 〈0〉 and there are a ∈ T \ {0} and
m ∈ m such that x = (a+m)y = ay.

Lemma 4.4. Let (A,m,GF(q)) ∈ F4
5, T ⊂ A a set of representatives of GF(q)

and x ∈ m \ m2. Then y ∈ m \ m2 exists such that {x, y} is a minimal A-
generating set of m, x4 = x3y = x2y2 = xy3 = y4 = 0 and one of the following
three relations is satisfied:

(a) x3 = 0, y3 6= 0, x2 = uy3, xy = vy3, where u, v ∈ T, u 6= 0, and
m2 = 〈y2〉.

(b) y3 = 0, x3 6= 0, y2 = ux3, xy = vx3, where u, v ∈ T, u 6= 0, and
m2 = 〈x2〉.

(c) xy = ρx2+σx3 and y2 = ρxy+ηx3, where η, σ, ρ ∈ T are such that ρ 6= 0
and ρ̄σ̄ 6= η̄ in GF(q), m2 = 〈x2〉 = 〈xy〉 = 〈y2〉 and m3 = 〈x3〉.

Proof: Since vA(m) = 2 and m has nilpotency index 4, then y 6∈ m \ m2

exists such that {x, y} is a minimal A-generating set for m and x4 = x3y =
x2y2 = xy3 = y4 = 0.
Let B = A/m3, x1 and y1 be the elements in the ring B corresponding to
x and y modulo m3. By Lemma 4.2, B is local ring with maximal ideal
m1 = m/m3, residue field GF(q), `B(B) = 4, {x1, y1} is a minimal B-generating
set for m1, T1 = {β + m3 ∈ B : β ∈ T} is a set of representatives for GF(q),
1 < `B(annB(m1)) < 3 and `B(annB(m1)) = 2. By Lemma 4.3(2), `B(m2

1) =
`B((m/m3)2) = `B(m2/m3) = `A(m2/m3) = vA(m2) = 1, hence m2

1 is a simple
ideal of B and is generated by any of its nonzero elements.
On the other hand, since annB(m1) = annB(x1)∩annB(y1), `B(annB(m1)) = 2,
`B(m1) = 3, then `B(annB(x1)) ∈ {2, 3}, `B(annB(y1)) ∈ {2, 3}, annB(x1) ∈
{m1, annB(m1)} and annB(y1) ∈ {m1, annB(m1)}. Thus the only possibilities
are the following:
(a) annB(x1) = m1 and annB(y1) = annB(m1),
(b) annB(x1) = annB(m1) and annB(y1) = m1.
(c) annB(x1) = annB(m1) and annB(y1) = annB(m1),
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(d) annB(x1) = m1 and annB(y1) = m1.
Each one of these cases will be treated. Observe that the case (b) is similar to
(a). Case (d) is impossible because annB(m1) = annB(x1) ∩ annB(y1) = m1 is
impossible.
CASE (a) annB(x1) = m1 and annB(y1) = annB(m1).
We have x2

1 = x1y1 = 0, hence y2
1 6= 0, x2 ∈ m3, xy ∈ m3 and y2 6∈ m3. Since

the nilpotency index is 4 and vA(m2) = 1, x3 = x2y = xy2 = 0, y3 6= 0, m2 =
〈y2〉, m3 = 〈y3〉. Observe the relations x2 = xy = 0 imply x ∈ annA(m) = m3

which are not possible. If x2 = 0, then xy 6= 0, m3 = 〈y3〉 = 〈xy〉, y3 = τxy,
where τ ∈ T \ {0}, y2 − τx ∈ annA(m) = m3 and x ∈ m2, a contradiction,
hence x2 6= 0, m3 = 〈y3〉 = 〈x2〉, x2 = uy3, xy = vy3, where u, v ∈ T and
u 6= 0.
CASE (c) annB(x1) = annB(m1) and annB(y1) = annB(m1).
We have x2

1 6= 0, x1y1 6= 0, y2
1 6= 0, then m2

1 = 〈x2
1〉 = 〈y2

1〉 = 〈x1y1〉, x1y1 =
ρx2

1, where ρ ∈ T1\{0}, x1(y1−ρx1) = 0, y1−ρx1 ∈ annB(x1) = annB(y1) and
y2
1−ρx1y1 = 0. These relations are equivalent to xy−ρx2 ∈ m3, y2−ρxy ∈ m3,

x2 6∈ m3, y2 6∈ m3 and xy 6∈ m3, where ρ ∈ T \ {0}. Hence m2 = 〈x2〉 = 〈xy〉 =
〈y2〉, by Lemma 4.3(2). Since the nilpotency index of m is 4, x2y = ρx3,
xy2 = ρx2y = ρ2x3, y3 = ρxy2 = ρ3x3, m3 = 〈x3〉, xy = ρx2 + σx3 and
y2 = ρxy + ηx3, where σ, η ∈ T.
Finally, if ρ̄σ̄ = η̄ in GF(q), then ηx3 = ρσx3 = σx2y, x(y − ρx − σx2) = 0
and y(y − ρx − σx2) = y2 − ρxy − σx2y = y2 − ρxy − ηx3 = 0, consequently
y − ρx− σx2 ∈ annA(m) = m3 ⊂ m2, a contradiction.

Corollary 4.5. Let (A,m,GF(pd)) ∈ L4
5.

(1) If p ∈ m2, then char(A) ∈ {p, p2}.

(2) If p 6∈ m2, there is x ∈ m\m2 such that {p, x} is a minimal A-generating
set for m and:

(i) If {p, x} satisfies the relation of Lemma 4.4(1), then char(A) = p3.

(ii) If {p, x} satisfies the relation of Lemma 4.4(2), then char(A) = p4.

(iii) If {p, x} satisfies the relation of Lemma 4.4(3), then char(A) = p4.

Proof: (1) If p ∈ m2, then p2 ∈ m4 = 〈0〉 and the assertion follows.
(2) By Lemma 4.4, we have the following three cases:

(i) p3 = 0, x3 6= 0, p2 = ux3, px = vx3, where u, v ∈ T, u 6= 0. Then p2 6= 0
and char(A) = p3.

(ii) x3 = 0, p3 6= 0, x2 = up3, px = vp3, where u, v ∈ T, u 6= 0. Then
char(A) = p4.
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(iii) px = ρp2 + σp3, x2 = ρpx + ηp3, m3 = 〈p3〉 6= 〈0〉, where η, σ, ρ ∈ T are
such that ρ 6= 0 and ρ̄σ̄ 6= η̄ in GF(q). Then char(A) = p4.

The cases in Corollary 4.5 will be treated in the following propositions.

Proposition 4.6. Let (A,m,GF(pd)) ∈ L4
5 be such that char(A) = p2 and

p ∈ m2. Then:

(i) When 〈p〉 = m2.

(1) If p = 2 the ring A is isomorphic to
GR(22, d)[X,Y]/〈Y2 − 2,X2 −Y3,XY〉.

(2) If p is odd the ring A is isomorphic to
GR(p2, d)[X,Y]/〈Y2 − p,X2 −Y3,XY〉 or
GR(p2, d)[X,Y]/〈ζY2 − p,X2 −Y3,XY〉 or
GR(p2, d)[X,Y]/〈Y2 − p,X2 − ζY3,XY〉 or
GR(p2, d)[X,Y]/〈ζY2 − p,X2 − ζY3,XY〉.

(ii) When 〈p〉 = m3.

(1) If p = 2 and 3|2d − 1 the ring A is isomorphic to
GR(22, d)[X,Y]/〈Y3 − 2,X2 −Y3,XY〉 or
GR(22, d)[X,Y]/〈ζY3 − 2,X2 −Y3,XY〉 or
GR(22, d)[X,Y]/〈ζ2Y3 − 2,X2 −Y3,XY〉.

(2) If p = 2 and 3 6 |2d − 1 the ring A is isomorphic to
GR(22, d)[X,Y]/〈Y3 − 2,X2 −Y3,XY〉.

(3) If p is odd and 3|pd − 1 the ring A is isomorphic to
GR(p2, d)[X,Y]/〈Y3 − p,X2 −Y3,XY〉 or
GR(p2, d)[X,Y]/〈ζY3 − p,X2 −Y3,XY〉 or
GR(p2, d)[X,Y]/〈ζ2Y3 − p,X2 −Y3,XY〉 or
GR(p2, d)[X,Y]/〈Y3 − p,X2 − ζY3,XY〉 or
GR(p2, d)[X,Y]/〈ζY3 − p,X2 − ζY3,XY〉 or
GR(p2, d)[X,Y]/〈ζ2Y3 − p,X2 − ζY3,XY〉.

(4) If p is odd and 3 6 |pd − 1 the ring A is isomorphic to
GR(p2, d)[X,Y]/〈Y3 − p,X2 −Y3,XY〉 or
GR(p2, d)[X,Y]/〈Y3 − p,X2 − ζY3,XY〉.

T = {0, 1, . . . , ζpd−2} is the Teichmüller set of the Galois ring GR(p2, d).

In these cases m = 〈x, y〉, m2 = 〈y2〉 and annA(m2) = 〈x, y2〉.
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Proof: By Theorem 3.1 we may assume that the Galois ring GR(p2, d) ⊂ A

and let T = {0, 1, . . . , ζpd−2} the Teichmüller set of this Galois ring. Let {x, y}
be a minimal A-generating set for the maximal ideal m satisfying statements
(i), (ii) or (iii) of Lemma 4.4. Cases (i) and (ii) are similar. By (i) and
(iii) of Lemma 4.4, m2 = 〈y2〉 and m3 = 〈y3〉, then p ∈ 〈y2〉 implies p =
ω1y2 + ω2y3, where ω1, ω2 ∈ T not both zero. Observe that ω1 6= 0 if and
only if 〈p〉 = m2 and ω1 = 0 if and only if 〈p〉 = m3. Again by Theorem 3.1,
in case (i) there is an epimorphism from A(u,r,s) := GR(p2, d)[X,Y]/〈rY2 +
sY3 − p,X2 − uY3,XY,X4,X3Y,X2Y2,XY3,Y4〉 onto A, and in the case (iii)
from B(η,σ,ρ,f,g) := GR(p2, d)[X,Y]/〈fY2 + gY3 − p,XY − ρX2 − σX3,Y2 −
ρXY − ηX3,X4,X3Y,X2Y2,XY3,Y4〉 onto A, where r, s, f, g, u, η, σ, ρ ∈ T
with uρ 6= 0 and ρσ 6= η, r and s not both zero and f and g not both zero.
By the proof of Lemma 3.7, |A(u,r,s)| = |B(η,σ,ρ,f,g)| = p5s = |A| then the
epimorphism mentioned above is an isomorphism and from the same Lemma
the assertion follows.

Proposition 4.7. Let (A,m,GF(pd)) ∈ L4
5 be such that char(A) = p. Then

A is isomorphic to
GF(pd)[X,Y]/〈X2 −Y3,XY〉.

In this case m = 〈x, y〉, m2 = 〈y2〉 and annA(m2) = 〈x, y2〉.

Proof: Use the same arguments as in Proposition 4.6 and Lemma 3.8.

Proposition 4.8. Let (A,m,GF(pd)) ∈ L4
5 be such that char(A) = p4 and

p 6∈ m2. Then:

(1) If p = 2 the ring A is isomorphic to
GR(24, d)[X]/〈X2 − 23, 2X〉.

(2) If p is odd the ring A is isomorphic to
GR(p4, d)[X]/〈X2 − p3, pX〉 or
GR(p4, d)[X]/〈X2 − ζp3, pX〉,
{0, 1, . . . , ζpd−2} is the Teichmüller set of the Galois ring GR(p4, d).

In these cases m = 〈p, x〉, m2 = 〈p2〉 and annA(m2) = 〈p2, x〉.

Proof: Use the same arguments as in Proposition 4.6 and Lemma 3.9.

Proposition 4.9. Let (A,m,GF(pd)) ∈ L4
5 be such that char(A) = p3 and

p 6∈ m2. Then:

(1) If 3 6 |pd − 1 the ring A is isomorphic to
GR(p3, d)[X]/〈p2 −X3, pX〉.
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(2) If 3|pd − 1 the ring A is isomorphic to
GR(p3, d)[X]/〈p2 −X3, pX〉 or
GR(p3, d)[X]/〈p2 − ζX3, pX〉 or
GR(p3, d)[X]/〈p2 − ζ2X3, pX〉,
{0, 1, . . . , ζpd−2} is the Teichmüller set of the Galois ring GR(p3, d).

In these cases m = 〈p, x〉, m2 = 〈x2〉 and annA(m2) = 〈p, x2〉.

Proof: Use the same arguments as in Proposition 4.6 and Lemma 3.10.

In the following theorem we summarize the previously proven claims as the
main result of this section.

Theorem 4.10. Let (A,m,GF(pd)) be a finite local Frobenius non-chain ring
of length 5 and nilpotency index 4. Then A is isomorphic to one of the fol-
lowing rings:

(a) If p = 2:
GR(22, d)[X,Y]/〈Y2 − 2,X2 −Y3,XY〉.
If p is odd:
GR(p2, d)[X,Y]/〈Y2 − p,X2 −Y3,XY〉 or
GR(p2, d)[X,Y]/〈ζY2 − p,X2 −Y3,XY〉 or
GR(p2, d)[X,Y]/〈Y2 − p,X2 − ζY3,XY〉 or
GR(p2, d)[X,Y]/〈ζY2 − p,X2 − ζY3,XY〉.
In this case:
char(A) = p2,m = 〈x, y〉,m2 = 〈y2〉 = 〈p〉 and annA(m2) = 〈x, y2〉.

(b) If p = 2 and 3|2d − 1
GR(22, d)[X,Y]/〈Y3 − 2,X2 −Y3,XY〉 or
GR(22, d)[X,Y]/〈ζY3 − 2,X2 −Y3,XY〉 or
GR(22, d)[X,Y]/〈ζ2Y3 − 2,X2 −Y3,XY〉.
If p = 2 and 3 6 |2d − 1
GR(22, d)[X,Y]/〈Y3 − 2,X2 −Y3,XY〉.
If p is odd and 3|pd − 1
GR(p2, d)[X,Y]/〈Y3 − p,X2 −Y3,XY〉 or
GR(p2, d)[X,Y]/〈ζY3 − p,X2 −Y3,XY〉 or
GR(p2, d)[X,Y]/〈ζ2Y3 − p,X2 −Y3,XY〉 or
GR(p2, d)[X,Y]/〈Y3 − p,X2 − ζY3,XY〉 or
GR(p2, d)[X,Y]/〈ζY3 − p,X2 − ζY3,XY〉 or
GR(p2, d)[X,Y]/〈ζ2Y3 − p,X2 − ζY3,XY〉.
If p is odd and 3 6 |pd − 1
GR(p2, d)[X,Y]/〈Y3 − p,X2 −Y3,XY〉 or
GR(p2, d)[X,Y]/〈Y3 − p,X2 − ζY3,XY〉.
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In this case:
char(A) = p2,m = 〈x, y〉,m2 = 〈y2〉,m3 = 〈p〉 and annA(m2) = 〈x, y2〉.

(c) GF(pd)[X,Y]/〈X2 −Y3,XY〉.
In this case:
char(A) = p,m = 〈x, y〉,m2 = 〈y2〉 and annA(m2) = 〈x, y2〉.

(d) If p = 2
GR(24, d)[X]/〈X2 − 23, 2X〉.
If p is odd
GR(p4, d)[X]/〈X2 − p3, pX〉 or
GR(p4, d)[X]/〈X2 − ζp3, pX〉,
{0, 1, . . . , ζpd−2} is the Teichmüller set of the Galois ring GR(p4, d).
In this case:
char(A) = p4, p 6∈ m2,m = 〈p, x〉,m2 = 〈p2〉 and annA(m2) = 〈p2, x〉.

(e) If 3 6 |pd − 1
GR(p3, d)[X]/〈p2 −X3, pX〉.
If 3|pd − 1
GR(p3, d)[X]/〈p2 −X3, pX〉 or
GR(p3, d)[X]/〈p2 − ζX3, pX〉 or
GR(p3, d)[X]/〈p2 − ζ2X3, pX〉,
{0, 1, . . . , ζpd−2} is the Teichmüller set of the Galois ring GR(p3, d).
In this case:
char(A) = p3, p 6∈ m2,m = 〈p, x〉,m2 = 〈x2〉 and annA(m2) = 〈p, x2〉.

Let (A,m,GF(2d)) ∈ L4
5 be such that A has 25 elements. Since |A| = 25 =

(25d) and 3 6 |25 − 1, then d = 1 and we have the following;

Corollary 4.11. Let (A,m,GF(pd)) be a finite local Frobenius non-chain ring
with nilpotency index 4 and 25 = 32 elements. Then A is isomorphic to one
of the following rings:

(a) Z22 [X,Y]/〈Y2 − 2,X2 −Y3,XY〉.
In this case, char(A) = 22, 2 ∈ m2, 〈2〉 = m2.

(b) Z22 [X,Y]/〈Y3 − 2,X2 −Y3,XY〉
In this case, char(A) = 22, 2 ∈ m2, 〈2〉 = m3.

(c) GF(2)[X,Y]/〈X2 −Y3,XY〉
In this case, char(A) = 2.

(d) Z24 [X]/〈X2 − 23, 2X〉.
In this case, char(A) = 24, 2 6∈ m2.
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(e) Z23 [X]/〈22 −X3, 2X〉.
In this case, char(A) = 23, 2 6∈ m2.

5 Constacyclic codes over finite local rings in F4
5

Let (A,m,GF(q)) be a finite local ring and γ a unit of A. Assume that the
integer n > 1 is not divisible by p, so that by Hensel’s Lemma, Tn − γ is
the product of basic irreducible pairwise coprime polynomials in A[T]. Re-
call that a linear code of length n over A is γ-constacyclic if it is invariant
under the permutation (a0, a1, . . . , an−1) 7→ (γan−1, a0, . . . , an−2). As usual,
γ-constacyclic codes of length n over A can be identified as ideals in the quo-
tient ring A[T]/〈Tn−γ〉 via the isomorphism from An to A[T]/〈Tn−γ〉 defined
by (a0, . . . , an−1) 7→ a0+a1T+. . .+an−1Tn−1, (the polynomial representation
of An).
Recall that F5

4 is the family of finite local Frobenius non-chain rings of length
5 and nilpotency index 4. In this Section the structure and the number of con-
stacyclic codes over rings in F5

4 of length relatively prime to the characteristic
of the residue field of the ring are determined.

The following result is on the structure of γ-constacyclic codes given in [2].

Lemma 5.1. Let (A,m,GF(q)) be a finite local ring, l = `A(A), γ a unit of A
and n an integer relatively prime to q. Let Tn−γ = f1 · · · fr be a representation
of Tn − γ as a product of basic irreducible pairwise coprime polynomials in
A[T], Ai = A[T]/〈fi〉 and si = deg(̄fi). Then

(1) A[T]/〈Tn − γ〉 ∼= ⊕ri=1Ai.

(2) Any ideal I of A[T]/〈Tn − γ〉 is a direct sum of ideals of Ai and there is
a partition of [1, . . . , r], U0,U1, . . . ,Ul, such that:

I =
⊕
u∈U1

Iu ⊕
⊕
u∈U2

Iu ⊕ . . .⊕
⊕

u∈Ul−2

Iu ⊕
⊕

u∈Ul−1

Iu ⊕
⊕
u∈Ul

Iu

where Ui = {u : `Au(Iu) = i}.

(3) Let I and U0,U1, . . . ,Ul be as above, then:

|I| = q
∑
u∈U1

su+2
∑
u∈U2

su+...+(l−1)
∑
u∈Ul−1

su+l
∑
u∈Ul

su .

(4) The number of γ-constacyclic codes of length n over A is:

|L(A1)| · · · |L(Ar)|.
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For the remainder of this paper the following notation will be used. Let
(A,m,GF(q)) ∈ F4

5, f ∈ A[T] a basic irreducible polynomial, s = deg(f̄) and
(B = A[T]/〈f〉,mB,GF(qs)) the separable extension of A determined by f.

(a) For T ⊂ A, a set of representatives of GF(q), without loss of general-
ity it can be assume that T is the Teichmüller set of the Galois ring
GR(char(A), d).

(b) Ts = {a0 +a1T+ · · ·+as−1Ts−1 : ai ∈ T} ⊂ B the set of representatives
of B/mB = GF(qs).

(c) For a ∈ GF(qs), a(Ts) will denote the only representative of a in Ts.
For h = a0 + a1T + . . . + alT

l ∈ GF(qs)[T] the polynomial a0(Ts) +
a1(Ts)T + . . .+ al(Ts)Tl in B[T] will denoted by hTs .

(d) A fixed minimal A-generating set {α1, α2} of the maximal ideal m will
be considered.
If the ring A is one of the rings in case (a), (b) and (c) of Theorem 4.10,
α1 = x and α2 = y.
If the ring A is one of the rings in case (d) of Theorem 4.10, α1 = x and
α2 = p.
If the ring A is one of the rings in case (e) of Theorem 4.10, α1 = p and
α2 = x.
When we take a minimal A-generating set for m we understand that
{α1, α2} is that ordered minimal A-generating set for m.
Observe that, in all cases, α1α2 = 0, m = 〈α1, α2〉, m2 = 〈α2

2〉, and
annA(m2) = 〈α1, α

2
2〉.

For our purposes the following result on the ideals of a ring in the family
F4
5 will be useful.

Lemma 5.2. Let (A,m,GF(q)) ∈ F4
5, T and Ts as above, α̃ = {α1, α2} the

minimal A-generating set for m, f ∈ A[T] a monic basic irreducible polynomial
of degree s and B = A[T]/〈f〉, then:

(1) The ideals of length 2 of B are between m3B and annA(m2)B and these
ideals are:
〈α2

2〉, 〈α1 + λ1α
2
2〉, 〈α1 + λ2α

2
2〉, . . . , 〈α1 + λqsα

2
2〉 λi ∈ Ts.

(2) The ideals of length 3 of B are between m2B and mB and these ideals
are:
〈α1, α

2
2〉, 〈α2〉, 〈α1 + λ2α2〉, 〈α1 + λ3α2〉, . . . , 〈α1 + λqsα2〉 λi ∈ Ts \ {0}

In particular, the number of ideals of B is 2qs + 6, mB and annA(m2)B are
the only two non principal ideals of B.
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Proof: First recall the following facts: (a) (B,mB,GF(qs)) ∈ F4
5 and m3B

is the unique minimal ideal of B, (b) mannA(m2) = m3 and [annA(m2)]B =
annB(m2B) = 〈α1, α

2
2〉, (c) a minimal A-generating set for an ideal of A

is a minimal B-generating set for its expansion to B, (d) vA(annA(m2)) =
vB(annA(m2)B) = vA(m) = vB(mB) = 2, (e) m2B = 〈α2

2〉 and vA(m2) =
vB(m2B) = 1
(1) {α1, α

2
2} is a minimal A-generating set for annA(m2). By Lemma 4.1(3),

the ideals of length 2 are between mannA(m2)B = m3B and ann(m2)B. The
assertion follows from Corollary 2.2.
(2) By Lemma 4.1(2), the ideals of length 3 are between m2B and mB. By
Corollary 2.2, the ideals between m2B and mB are 〈α2〉+ m2B, annB(m2B) =
〈α1〉+ m2B, 〈α1 + λ2α2〉+ m2B, 〈α1 + λ3α2〉+ m2B, . . . , 〈α1 + λqsα2〉+ m2B,
where λi ∈ Ts \{0}. Now let I be an ideal of B of length 3, since vB(m2B) = 1,
then vB(I) ≤ 2, and if vB(I) = 2, then I = annB(m2B) = 〈α1, α

2
2〉, by Lemma

4.1(4). The assertion follows.

Corollary 5.3. Let (A,m,GF(q)) ∈ F4
5, γ a unit of A and (n, q) = 1. Let

f1, . . . , fr the unique monic basic irreducible pairwise coprime polynomials such
that Tn − γ = f1 · · · fr and si = deg(f̄i). Then the number of γ-constacyclic
codes of length n over A is:

[2qs1 + 6][2qs2 + 6] · · · [2qsr + 6].

Proof: The assertion follows from Lemma 5.1(4) and Lemma 5.2.

Observation 1. With the notation as in Lemma 5.2.

(1) The ideals of A of length 2 are in one to one correspondence with the set
{(0, 1), (1, λ) : λi ∈ Ts}, that is:
(0, 1) 7→ 〈α2

2〉, (1, λi) 7→ 〈α1 + λiα
2
2〉 λi ∈ Ts.

(2) The ideals of A of length 3 are in one to one correspondence with the set
{(0, 1), (1, λ) : λi ∈ Ts}, that is:
(0, 1) 7→ 〈α2〉, (1, 0) 7→ 〈α1, α

2
2〉, (1, λi) 7→ 〈α1 + λiα2〉 λi ∈ Ts \ {0}.

(3) We write α̃ for {α1, α2} and β̃ for {α1, α
2
2}; (0, 1)Bα̃ for the ideal of

B generated by α2; (1, 0)Bα̃ for the ideal of B generated by α1 and α2
2;

(1, λi)
B
α̃ for the ideal of B generated by α1 + λiα2, where λi ∈ Ts \ {0};

(0, 1)B
β̃

for the ideal of B generated by α2
2; (1, λi)

B
β̃

for the ideal of B

generated by α1 + λiα
2
2, where λi ∈ Ts.

For the remainder of the manuscript the following notation will be used.
Given (A,m,GF(q)) a finite local ring, γ a unit of A. If g(T) is a factor of

Tn − γ, let ĝ(T) = Tn−γ
g(T) . We will just write a0 + a1T + . . . + an−1Tn−1 for
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the corresponding class of a0 + a1T + . . . + an−1Tn−1 + 〈Tn − γ〉 in the ring
A[T]/〈Tn − γ〉.

The main result of this section, on the structure of γ-constacyclic codes
over a ring of the family F4

5 can now be established.

Theorem 5.4. Let (A,m,GF(q)) ∈ F4
5, γ be a unit of A, α̃ = {α1, α2} a

minimal A-generating set for m, T and Ts as above, C a γ-constacyclic code of
length n over A, f1, . . . , fr the unique monic basic irreducible pairwise coprime
polynomials such that Tn − γ = f1 · · · fr and si = deg(f̄i). Then there exists
unique monic polynomials F0,F1,F4,F5, unique subsets U2,U3 of [1, . . . , r],
and for each i ∈ {2, 3} and each u ∈ Ui, a unique ~vu ∈ {(0, 1), (1, λ) : λ ∈
Tdeg(fu)}, such that:

(1) Tn − γ = F0F1F4F5

∏
u∈U1

fu
∏
u∈U2

fu,

(2) C = 〈m3F̂1,mF̂4, F̂5, (~vu)β̃ f̂u, (~vw)α̃ f̂w : u ∈ U2, w ∈ U3〉.

(3) |C| = q5deg(F5)+4deg(F4)+deg(F1)+2
∑
u∈U2

deg(fu)+3
∑
ν∈U3

deg(fν).

Proof: Let Ai = A[T]/〈fi〉. From Lemma 5.1(2) and since m3Ai is the
minimal ideal of Ai and mAi is the maximal ideal of Ai, there is a partition
of [1, . . . , r], V0,V1, . . . ,V5, such that C has the form:⊕

v∈V1

m3Av ⊕
⊕
v∈V2

Iv ⊕
⊕
v∈V3

Iv ⊕
⊕
v∈V4

mAv ⊕
⊕
v∈V5

Av

where Vi = {v : `Av (Iv) = i}.
Let u ∈ V2, by Lemma 5.2(1), Iu is of the form (~vu)β̃ and it is identified

in A[T]/〈Tn − γ〉 with (~vu)β̃ f̂u, where ~vu ∈ {(0, 1), (1, λ) : λ ∈ Tdeg(fu)}.
Let w ∈ V3, by Lemma 5.2(2), Iw of the form (~vw)α̃, and it is identified in

A[T]/〈Tn − γ〉 with (~vw)α̃ f̂v, where ~vw ∈ {(0, 1), (1, λ) : λ ∈ Tdeg(fw)}.
Let Fi =

∏
v∈Vi fv, for i ∈ {0, 1, 4, 5}. Since

⊕
v∈Vi Av is identified in

A[T]/〈Tn − γ〉 with F̂i, the assertions (1) and (2) follow, the last assertion
follows from Lemma 5.1(3). The uniqueness is trivial.

The following examples are given illustrating the previous results.

Example 1. Let A = GF(2)[X,Y]/〈X2 −Y3,XY〉, be the ring of Proposition
4.7, and γ be a unit of A. {x, y} is a minimal A-generating set for m, T =
GF(2) ⊂ A is a set of representatives for its residue field. By Hensel’s Lemma,
T15 − γ = f1f2f3f4f5, where deg(f1) = 1, deg(f2) = 2, deg(f3) = deg(f4) =
deg(f5) = 4. Then A[T]/〈T15 − γ〉 ∼= A⊕A[T]/〈f2〉 ⊕A[T]/〈f3〉 ⊕A[T]/〈f4〉 ⊕
A[T]/〈f5〉, T2 = {a1 + a2T : ai ∈ GF(2)} is a set of representatives for the
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residue field of the ring A[T]/〈f2〉, T4 = {a1 + a2T + a3T2 + a4T3 : ai ∈
GF(2)} is a set of representatives for the residue field of the rings A[T]/〈fi〉,
i ∈ {3, 4, 5}.
The number of γ-constacyclic codes of length 15 over A is [2(2)4 + 6][2(2)4 +
6][2(2)4 + 6][2(2)2 + 6][2(2) + 6] = 7682080, and

(a) If U2 = {2}, U3 = {3}, F0 = f1f4, F1 = f5, F4 = F5 = 1, ~v2 =
(1, a0 + a1T) and ~v3 = (0, 1), the corresponding code is:

C = 〈m3F̂1,mF̂4, F̂5, (~vu)β̃ f̂u, (~vw)α̃ f̂w : u ∈ U2, w ∈ U3〉 =

〈m3 f̂5, [x + (a0 + a1T)y2 ]̂f2, yf̂3〉 =

〈y3f1f2f3f4, f1f2f3f4, [x + (a0 + a1T + a2T2 + a3T3)y2]f1f3f4f5, yf1f2f4f5〉.

(b) If U2 = {4}, U3 = ∅, F0 = 1, F1 = f2, F4 = f1f3, F5 = f5, ~v4 =
(1, a0 + a1T + a2T2 + a3T3), the corresponding code is:

C = 〈m3F̂1,mF̂4, F̂5, (~vu)β̃ f̂u, (~vw)α̃ f̂w : u ∈ U2, w ∈ U3〉 =

〈m3 f̂2,mf̂1f3, f̂5, [x + (a0 + a1T + a2T2 + a3T3)y2 ]̂f4〉 =

〈y3f1f3f4f5, xf2f4f5, yf2f4f5, f1f2f3f4, [x+(a0+a1T+a2T2+a3T3)y2]f1f2f3f5〉.

Example 2. Let A = GR(22, d)[X,Y]/〈Y2 − 2,X2 − Y3,XY〉, be the ring of
Proposition 4.6, and γ be a unit of A {x, y} is a minimal A-generating set for
m, T = {0, 1} ⊂ A is a set of representatives for its residue field. By Hensel’s
Lemma, T7 − γ = f1f2f3, where deg(f1) = 1, deg(f2) = deg(f3) = 3. Then
A[T]/〈T7−γ〉 ∼= A⊕A[T]/〈f2〉⊕A[T]/〈f3〉, T3 = {a1+a2T+a3T2 : ai ∈ GF(2)}
is a set of representatives for the residue field of the rings A[T]/〈fi〉, i ∈ {2, 3}.
The number of γ-constacyclic codes of length 7 over A is [2(2) + 6][2(2)3 +
6][2(2)3 + 6] = 4840, and

(a) If U2 = {1, 2}, U3 = {3}, F0 = F1 = F4 = F5 = 1, ~v1 = (1, 0),
~v2 = (1, a0+a1T+a2T2) and ~v3 = (1, b0+b1T+b2T2), the corresponding
code is:

C = 〈m3F̂1,mF̂4, F̂5, (~vu)β̃ f̂u, (~vw)α̃ f̂w : u ∈ U2, w ∈ U3〉 =

〈m3 f̂5, [x + (a0 + a1T)y2 ]̂f2, yf̂3〉 =

〈y3f1f2f3f4, f1f2f3f4, [x + (a0 + a1T + a2T2 + a3T3)y2]f1f3f4f5, yf1f2f4f5〉.
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(b) If U2 = {4}, U3 = ∅, F0 = 1, F1 = f2, F4 = f1f3, F5 = f5, ~v4 =
(1, a0 + a1T + a2T2 + a3T3), the corresponding code is:

C = 〈m3F̂1,mF̂4, F̂5, (~vu)β̃ f̂u, (~vw)α̃ f̂w : u ∈ U2, w ∈ U3〉 =

〈m3 f̂2,mf̂1f3, f̂5, [x + (a0 + a1T + a2T2 + a3T3)y2 ]̂f4〉 =

〈y3f1f3f4f5, xf2f4f5, yf2f4f5, f1f2f3f4, [x+(a0+a1T+a2T2+a3T3)y2]f1f2f3f5〉.

6 Conclusion

In this paper the family of finite local Frobenius non-chain rings of length 5
and nilpotency index 4 is determined. Furthermore, the number and struc-
ture of γ-constacyclic over finite local Frobenius non-chain rings of length 5
and nilpotency index 4, of length relatively prime to the characteristic of the
residue field of the ring, are determined. Examples are included illustrating
the main results.
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[3] C. A. Castillo-Guillén, C. Renteŕıa-Márquez, H. Tapia-Recillas, Duals of
constacyclic codes over finite local Frobenius non-chain rings of length 4,
Discrete Math. 341 (2018) 919-933.
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C. Renteŕıa-Márquez,
Department of Mathematics,
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